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Abstract
A new method for solving the Boltzmann transport equation is introduced. The
method is based on a discontinuous spline approximation of the distribution
function in the whole phase space. This procedure enables us to avoid the
widely used PN -approximation for the angle dependence of the distribution
function, so that we are able to treat strong anisotropies. The method is
applied to a nonparabolic multivalley model of silicon, which allows for the
investigation of the anisotropic high field transport of electrons in n-type silicon.
The results are compared to experimental data and Monte Carlo simulations.

PACS number: 02.30.Nm

1. Introduction

The Boltzmann transport equation (BTE) is an integro-differential equation, which can be
solved rigorously only in simple cases. Therefore, many approximative methods, e.g., discrete
velocity models, kinematic model-equations simplifying the complicated collision integral and
multigroup approaches were developed in the past [1]. The latter method, originally devised
for neutron transport, was recently generalized for nonlinear extended Boltzmann equations
[2, 3]. However, this brings in additional unknowns which stem from the integration of the
force term in the BTE. A continuous multigroup approach overcomes this difficulty [4] but
numerical simulations show the emergence of oscillations correlated to the number of groups
[5]. Moreover, the well-established procedure in the neutron transport theory of treating the
angle dependence of the distribution function by a truncated expansion in spherical harmonics
(PN -approximation [6]) proves to be inappropriate in describing strong anisotropies caused
by strong external forces. To compensate for these disadvantages, we propose a discontinuous
multicell spline approximation describing the angle dependence in the same flexible way as
it was already done for the energy dependence of the distribution function. Even though the
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approach is discontinuous, it is possible to find a way based on physical grounds to evaluate
the integrated force term correctly.

The basic idea of the method is to split up the phase space into tiny cells and to approximate
locally the carrier distribution function within these cells by a linear combination of a suitable
set of basis functions (splines). To gain enough equations for the newly introduced unknowns,
one can integrate the BTE over each cell by using, in principle, any weight function. By
choosing appropriate weights one can establish the correct balance of macroscopic quantities,
e.g., particle density, in the model equations. From a mathematical point of view, the method
is based on the idea of weighted residuals [7]. This leads to a matrix representation of the
BTE, which can be easily solved by standard numerical techniques.

We apply this multicell matrix method to a problem of physical interest where anisotropy
becomes important, namely the transport of electrons in silicon affected by high electric
fields. Under such circumstances the widely used drift-diffusion models fail on account of
their foundation in describing typical high field effects such as the drift velocity saturation
or the appearance of negative differential resistivity. Therefore, a much more complicated
semiclassical BTE must be applied [8].

In this field of activity, the BTE is nowadays solved with high accuracy by Monte Carlo
(MC) simulations which include the full band structure of the semiconductor and realistic
phonon dispersion curves [9, 10]. Of course, these simulations are time-consuming even on
powerful computers. For the purpose of device simulations it would be of interest to have an
alternative, as a faster solution method which may be less accurate than the MC calculations but
which reproduces all important high-field effects. In the past different alternative approaches
were presented such as the iterative technique [11, 12], the scattering matrix approach [13] or
a direct matrix method [14] based on a complete discretization of the BTE in the reciprocal
k-space. Moreover, recently finite difference schemes were applied to the BTE [15, 16]. Our
work is also intended to take a further step in developing deterministic solution methods to
the BTE.

The paper is organized as follows. The underlying physical model is described in
section 2. We introduce the multicell matrix method in detail in section 3 and we finally
apply it to n-type silicon in section 4. The numerical results are compared with the MC
simulations and measurements.

2. Physical model

In n-type silicon the electrons of the conduction band contribute mainly to the charge transport.
Therefore, neglecting holes in the valence band, we use a standard multivalley model [17] for
the band structure of silicon by considering six equivalent valleys lying around the six minima
along the �-directions of the conduction band. For values of the wave vector k close to the
minima of the conduction band, the isoenergetic surfaces are ellipsoids. This means that the
dispersion relation of energy ε of the electrons in the principal axis system is given by

ε(k) = h̄2

2

[
1

mt

(
k2
x + k2

y

)
+

k2
z

ml

]
(1)

where k is the wave vector, mt and ml, respectively, denote the transversal and longitudinal
effective mass of the electrons and h̄ is the common notation for the ratio of Plancks constant
and 2π . Using the Herring–Vogt transformation [18]

k∗
i = Tij kj (2)
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with
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0 0
(
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ml

)1/2


 (3)

which reduces the ellipsoidal equienergetic surfaces to spheres, the dispersion relation can be
rewritten in the parabolic form as

ε(k) = h̄2

2m0
k∗2 (4)

with the free electron mass m0. But in the case of high field transport, electrons with
wavevectors k far from the minima of the conduction band also emerge and their energies
ε deviate from the quadratic expression given in equation (1). A simple analytic way of
introducing nonparabolicity is to use an energy-wave vector relation of the type

γ = ε(1 + αε) = h̄2

2m0
k∗2 (5)

where α is the nonparabolicity parameter. A comparison with full band structure calculations
shows that equation (5) gives the correct density of states up to energies of about 2 eV [9].
The most drastic approximation of our simple band structure model is the negligence of other
secondary minima located at the centre of the Brillouin zone and along 〈111〉 directions.
However, this can be crudely justified by the hand-waving argument that they correspond to
high energies of the order of eV.

By setting up a BTE for the time-dependent distribution function f i(k, t) in each valley
for the case of an external electric field E, one gets the coupled system

∂f i

∂t
= −eE

h̄
· ∂f i

∂k
+ C[f i] + Ci.v.[f

i, f j ] i, j = 1, . . . , 6 (6)

where e is the charge of an electron. The collision operators C[f i] and Ci.v.[f i, f j ],
respectively, describe the change of the distribution function due to intra and intervalley
scattering processes. We assume the electrons to interact only with phonons; impurity
scattering and electron–electron collisions are neglected by assuming a low donor
concentration (≈1013) and accordingly a low-density electron gas. Selection rules for phonon-
assisted transitions [19, 20] in silicon allow only for acoustic intravalley scattering, f-scattering
between perpendicular valleys with longitudinal acoustic (LA) and transversal optical (TO)
phonons, and g-scattering between opposite valleys with longitudinal optical (LO) phonons.
However, the MC simulations show that other ‘forbidden’ low-energy intervalley phonon
transitions are necessary to improve the agreement with experiments when high-field transport
is considered [21, 22]. The contradiction to selection rules is softened by the fact that they are
only strictly valid at high symmetry points of the Brillouin zone.

Considering a nondegenerate electron gas allows us to approximate 1 − f by 1, which
essentially simplifies the mathematics by making the collision operator linear. A typical
collision operator then reads

C[f ] = V

8π3

(∫
P(k′,k)f (k′) d3k′ −

∫
P(k,k′)f (k) d3k′

)
(7)

where P(k′,k) is the transition rate from state k′ to k and V the volume of the crystal.
The time-dependent perturbation theory using the deformation potential approximation for
the Hamiltonian of the electron–phonon system provides the following general expression
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for the probability per unit time of a scattering event assisted by a phonon of wavevector q,
polarization ξ and energy h̄ωq

P (k,k′) = π

ρV ωq

(
Nq

Nq + 1

)
G|
ijqj ξi |2δ[ε(k′) − ε(k) ∓ h̄ωq] (8)

where the upper and lower symbols refer to absorption and emission of a phonon, respectively.
Here, ρ denotes the mass density of the semiconductor, 
ij is a tensor that describes the shift
of the electron band per unit deformation of the crystal and G is an overlap integral of Bloch
states. The phonon number Nq is in the following always assumed to be equal to its equilibrium
value at the temperature of the crystal. Finally, the Dirac-Delta function δ[ε(k′)−ε(k)∓h̄ωq]
guarantees the energy conservation. In the case of normal processes the overlap factor equals
unity for exact plane waves or for waves formed with pure s states. When lower symmetries
are involved such as p states in the case of cubic semiconductors, the overlap factor is less
than unity and mainly depends on the angle between initial and final states k and k′, measured
from the centre of the Brillouin zone. This angle does not spread over a wide range in the
case of intra and intervalley scattering and thus G is almost constant. By including this value
in the coupling constant 
, we can generally set the overlap factor to unity. In what follows,
we introduce several simplifications to equation (8) in the specific case of acoustic and optical
phonon scattering.

Due to selection rules, intravalley scattering is only enabled by acoustic phonons. When
high electric fields are considered, acoustic scattering can be treated as an elastic process,
because the average electron energy is of the order of the optical-phonon energy, and optical
phonons can assume the task of exchanging energy between the electrons and the crystal.
Moreover, acoustic phonon scattering only involves phonons with wave vectors near the
centre of the Brillouin zone and, therefore, one can use a linear dispersion relation

ωq = ul,tq (9)

where ul,t denotes the longitudinal and transversal sound velocity, respectively. We also
approximate the equilibrium Bose–Einstein distribution by the equipartition expression

Nq ≈ k0T

h̄ωq

− 1

2
. (10)

Here, k0 denotes the Boltzmann constant and T is the lattice temperature. In fact,
equation (10) is valid when h̄ωq � k0T , i.e. when the thermal energy is much larger than
the energy of the phonon involved in the transition. In the case of cubic lattice symmetry,
the deformation-potential tensor reduces to two independent components 
d and 
u [18].
Applying all these assumptions to equation (8), the sum of the transition probabilities per unit
time of absorption and emission processes becomes

Pl(k,k′) = 2πk0T

h̄ρV u2
l

(
d + 
u cos2 θ)2δ[ε(k′) − ε(k)] (11)

for longitudinal modes and

Pt(k,k′) = 2πk0T

h̄ρV u2
l

(
u sin θ cos θ)2δ[ε(k′) − ε(k)] (12)

for transverse modes, where θ is the angle between q and the longitudinal axis of the valley
considered. The effect of anisotropy is not large [23], and longitudinal and transversal modes
can be treated in a combined way by replacing ul and ut by an average value u = (2ut + ul)/3
and by averaging over the angle θ , which leads to the isotropic expression

P(k,k′) = 2πk0T 
2
1

h̄ρV u2
δ[ε(k′) − ε(k)]. (13)
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Intervalley scattering is induced by both low wavelength acoustic phonons and optical-
mode phonons. In both cases the energy of the involved phonon can be assumed constant
h̄ωq = h̄ωop, because the dispersion curves are quite flat. Consequently, acoustic intervalley
scattering can be treated in the same way as optical phonon transitions. Starting from
equation (8), the scattering probability for optical phonons in the simplest case can be written
as

P(k,k′) = π(DtK)2

ρV ωop

(
Nop

Nop + 1

)
δ[ε(k′) − ε(k) ∓ h̄ωop] (14)

by replacing |
ijqj ξi |2 with a squared optical coupling constant (DtK)2. The phonon number
Nop is given by the Bose–Einstein function evaluated at the constant phonon energy.

3. The multicell matrix method

Due to the simple form of the dispersion relation after applying the Herring–Vogt
transformation [18], it is advantageous to set up each of the six BTEs (6) in its corresponding
principal axis system and transform it afterwards to the ‘starred system’. The transformed
electric field E∗(i), (i = 1, . . . , 6), provides a certain direction in space. Thus, we can assume
the distribution function f i(k∗, t) to be symmetric around E∗(i) and, in this way, it only
depends on the energy ε and χ(i), the cosine of the angle between k∗ and E∗(i). In the interest
of less cumbersome notation, in future references to the single-valley quantities the superscript
(i) will be dropped except where this would lead to ambiguity. The density of states (DOS)
per valley is defined by

D(ε) = 1

V

∑
k′,↑+↓

δ[ε(k′) − ε(k)] (15)

where the subscript ↑ + ↓ means one must sum over both spin orientations. Using the
nonparabolic dispersion relation (5), this leads to

D(ε) =
√

2m
3/2
d

π2h̄3 γ 1/2(1 + 2αε) (16)

where the ‘DOS-effective mass’ md = (
m2

t ml
)1/3

is introduced. It proves convenient to absorb
the DOS-factor γ 1/2(1 + 2αε) in the definition of the distribution function

ψ(ε, χ, t) = γ 1/2(1 + 2αε)f (ε, χ, t). (17)

The system of BTEs (6) now reads

∂ψi

∂t
= −

(
∂ψi

∂t

)
E

+ Cac[ψi] + Ci.v.[ψ
i, ψj ] i, j = 1, . . . , 6 j �= i (18)

where the force term(
∂ψi

∂t

)
E

= eE

h̄
· ∂f i

∂k
γ 1/2(1 + 2αε) (19)

after some algebra results in(
∂ψi

∂t

)
E

= αE∗

{
χ

[
γ 1/2

1 + 2αε

∂ψ

∂ε
− ψ

(
1

2γ 1/2
+

2αγ 1/2

(1 + 2αε)2

)]
+

(1 − χ2)

2γ 1/2

∂ψ

∂χ

}
(20)

with αE∗ = √
2eE∗/m

1/2
0 . By using the isotropic transition probability (13), the collision

integral due to acoustic intravalley scattering yields

Cac[ψi(ε, χ)] = αacγ
1/2(1 + 2αε)

[(
1

2

∫ 1

−1
ψ(ε, χ ′) dχ ′

)
− ψ(ε, χ)

]
(21)
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with the constant factor

αac =
√

2k0T 
2
1m

3/2
d

πρu2h̄4 . (22)

Analogously, integrating the transition probability (14) by considering Nf different f-type
phonons with energies h̄ωn

f , (n = 1, . . . , Nf ), and Ng g-type phonons with energies h̄ωn
g ,

(n = 1, . . . , Ng), the collision term due to f and g-type intervalley scattering finally reads

Cg,f
i.v. [ψi(ε, χ), ψj ] =

∑
j �=i

Ng,Nf∑
n=1

αn
g,f

{[
1

2
g(ε)

∫ 1

−1
ψj

(
ε − h̄ωn

g,f , χ ′)

+ exp
(
xn

g,f

)
ψj

(
ε + h̄ωn

g,f , χ ′) dχ ′
]

− ψi(ε, χ)
[
g
(
ε + h̄ωn

g,f

)
+ exp

(
xn

g,f

)
g
(
ε − h̄ωn

g,f

)] }
(23)

where the summation with respect to j runs over perpendicular valleys in the case of f-
scattering and for g-scattering j refers to the valley opposite to the considered valley i. Here,
we have introduced the abbreviations g(ε) = γ (ε)1/2(1 + 2αε), xn

g,f = h̄ωn
g,f

/
k0T and

αn
g,f = m

3/2
d (DtK)2

n,g,f√
2πρh̄3ωn

g,f

1

exp
(
xn

g,f

) − 1
. (24)

The basic idea of our method is to split the domain of definition of the distribution function
ψ into tiny cells of rectangular form . This means that we introduce a huge number Nε of
energy groups of constant length �ε defined by the intervals Iν = [εν−1, εν] with εν = ν�ε

and ν = 1, . . . , Nε. Analogously, the χ -space which equals the interval [−1, 1] is divided
into Nχ groups Iµ = [χµ−1, χµ] of constant length �χ = 2/Nχ with χµ = �χµ − 1 and
µ = 1, . . . , Nχ . The distribution function is approximated over such a cell Bνµ = Iν × Iµ by
a linear combination of modified Legendre polynomials

P λ
ν (ε) =

√
2

�ε

P λ(xν) P λ′
µ (χ) =

√
2

�χ

P λ′
(xµ) (25)

where P λ,λ′
denotes the Legendre polynomial of order λ, λ′ and

xν = 2

(
ε

�ε

− ν

)
+ 1 xµ = 2

(
χ + 1

�χ

− µ

)
+ 1. (26)

The modification (25) of the Legendre polynomial is motivated by obtaining in this way the
useful orthogonality relations∫

Iν

P λ
ν P l

ν dε = 2δλl

2l + 1

∫
Iµ

P λ′
µ P l

µ dχ = 2δλ′l

2l + 1
(27)

where δλl is the common Kronecker delta. Now, the distribution function reads

ψ(ε, χ, t) ≈
Nε∑
ν=1

Nχ∑
µ=1

θ(Bνµ)

�ε∑
λ=0

�χ∑
λ′=0

ψλλ′
νµ (t)P λ

ν (ε)P λ′
µ (χ) (28)

where we have introduced the characteristic function

θ(Bνµ) =
{

1 for (ε, χ) in Bνµ

0 elsewhere
(29)
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and the unknowns ψλλ′
νµ , which depend on time t; �ε,�χ represent the truncation

indices.
To determine these unknowns, we set up a system of moment equations by multiplying the

BTE (6) by the weight functions P l
νP

l′
µ for l = 1, . . . , �ε and l′ = 1, . . . , �χ and integrating

it over the cells Bνµ for ν = 1, . . . , Nε and µ = 1, . . . , Nχ . In this way, by using the
orthogonality relations (27) one obtains∫

Bνµ

∂ψ

∂t
P l

νP
l′
µ dε dχ = 4

(2l + 1)(2l′ + 1)

∂ψll′
νµ

∂t
. (30)

The integration of the collision operator for acoustic phonons (21) results in

∫
Bνµ

Cac[ψ]P l
νP

l′
µ dε dχ = αac

�ε∑
λ=0

cνλl


�χδl′0

Nχ∑
µ=1

ψ
νµ

λ0 − 2

2l′ + 1
ψ

νµ

λl′


 (31)

with the constant

cνλl =
∫ 1

−1
P λ(xν)γ

1/2(1 + 2αε)P l(xν) dxν. (32)

In the following, the limits of the summation indices are dropped, where this is possible
without misunderstanding.

If we assume that the energies of the intervalley phonons can be written as a multiple of
the energy discretization interval �ε, electrons of a certain valley i can only ‘jump’ from one
cell into another, which belongs to a different valley j . Considering such a typical process
assisted by a certain intervalley phonon with energy h̄ωi.v. ≈ s�ε, the corresponding collision
integral coincides with a single term of the sum (23). Integrating it over the cell Bνµ leads to∫

Bνµ

Ci.v.[ψ
i, ψj ]P l

νP
l′
µ dε dχ = αi.v.

[
�χδl′0

∑
µ

∑
λ

cνλl

(
ex0ψ

(j)ν+sµ

λ0 + ψ
(j)ν−sµ

λ0

)

− 2

2l′ + 1

∑
λ

ψ
(i)νµ

λl′ (cν+sλl + ex0cν−sλl)

]
(33)

where x0 = h̄ωi.v./k0T and αi.v. is given by equation (24) by changing corresponding
subscripts. The emission of a phonon is not possible if the energy of the electrons is smaller
than the phonon energy (ε < h̄ωi.v.). In order to conserve the particle number, we also demand
that no electrons are up-scattered to energies higher than the maximum value εNε

, which means
that absorption of phonons is forbidden if ε > εNε

− h̄ωi.v.. Therefore, if ν � s or ν > Nε − s

all terms in equation (33) with indices ν − s and ν + s, respectively, must be cancelled.
The integration of the force term (20) yields∫

Bνµ

(
∂ψ

∂t

)
E

P l
νP

l′
µ dε dχ = αE∗

{∫
Iµ

P l′
µχ

[
ψ

γ 1/2

1 + 2αε
P l

ν

]εν

εν−1

dχ

−
∫

Bνµ

χ
γ 1/2

1 + 2αε

dP l
ν

dε
ψP l′

µ dε dχ +
∫

Iν

P l
ν

1

2γ 1/2

[
ψ(1 − χ2)P l′

µ

]χµ

χµ−1
dε

−
∫

Bνµ

(1 − χ2)
1

2γ 1/2

dP l′
µ

dχ
ψP l

ν dε dχ

}
. (34)

Here, the problem arises as to how we must evaluate the distribution function at the
boundaries of the cell Bνµ. Since continuity of the distribution function is not guaranteed
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0 ε εε ε ε1 ν−1 ν N1 N.... ....

1

1

0χ

energy

Figure 1. Possible jumps of electrons between cells according to the impact of an electric field.

by our ansatz (28), it makes a difference from which side one approaches the boundary.
The right choice can be found on physical grounds. In the special case of l = l′ = 0,
the integral

∫
Bνµ

ψP 0
ν P 0

µ dε dχ equals the particle density nνµ in the cell Bνµ except for a
constant factor. Hence, the corresponding moment equation can be interpreted as a continuity
equation for the considered cell. Such an equation can also be derived from a heuristic point
of view. The impact of an electric field on an electron in the state k can be described by the
Pseudo-Newtonian law

h̄
dk

dt
= eE. (35)

Applying the Herring–Vogt transformation on equation (35) and rewriting the resulting vector
equation in a special coordinate system, where the electric field vector coincides with the
z-axis, one obtains

dk∗
x

dt
= dk∗

y

dt
= 0 h̄

dk∗
z

dt
= eE∗. (36)

Electrons are negatively charged and, therefore, the force acts along the negative z-
axis. Integration of the equations of motion (36) shows that the x- and y-components of the
wave vector remain constant, whereas the z-component tends to minus infinity with time.
The modulus of the wave vector is proportional to the energy of the electron and χ denotes
the cosine of the angle between k∗ and E∗. This means that if the electron starts with a
positive kz or equally χ > 0, the energy first decreases until χ = 0 and then increases to
infinity. This implies, by limiting the maximum energy to εNε

, that electrons, which are
influenced by an electric field, can only jump between cells according to the scheme shown in
figure 1. Considering now a cell Bνµ with the property χ < 0, the particle density nνµ of the
cell changes in the time interval �t by

�nνµ = − nνµ〈χ̇〉νµ�t + nνµ+1〈χ̇〉νµ+1�t − nνµ〈ε̇〉νµ�t + nν−1µ〈ε̇〉ν−1µ�t (37)

where 〈·〉νµ denotes an averaging at the boundaries of the cell Bνµ and the dot marks the
usual abbreviation for the derivative with respect to time. Since k∗

z = (√
2m

1/2
0

/
h̄
)
γ 1/2χ

equation (36) leads to

dk∗
z

dt
= m

1/2
0 (1 + 2αε)

h̄
√

2γ 1/2χ

dε

dt
+

√
2m

1/2
0 γ 1/2

h̄(1 − χ2)

dχ

dt
= eE∗ (38)
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and by assuming either ε or χ to be constant, this provides

χ̇ = h̄(1 − χ2)eE∗
√

2m
1/2
0 γ 1/2

ε̇ = h̄
√

2eE∗γ 1/2χ

m
1/2
0 (1 + 2αε)

. (39)

After calculating the averages

〈ε̇〉νµ = 1

nνµV

∑
ε=εν,χ∈Iµ

↑+↓

ε̇f (ε, χ)

〈χ̇〉νµ = 1

nνµV

∑
χ=χµ−1,ε∈Iν

↑+↓

χ̇f (ε, χ) (40)

and carrying out the limit �t → 0 equation (37) finally yields

∂nνµ

∂t
= αE∗

m
3/2
d√

2h̄2π2

{∫
Iν

1

2γ 1/2

[−(
1 − χ2

µ−1

)
ψ

(
ε, χ+

µ−1

)
+

(
1 − χ2

µ

)
ψ

(
ε, χ+

µ

)]
dε

+
∫

Iµ

χ

[
γ (εν)

1/2

1 + 2αεν

ψ(ε−
ν , χ) − γ (εν−1)

1/2

1 + 2αεν−1
ψ(ε−

ν−1)

]
dχ

}
(41)

where the superscripts +/− denote the right and left side limit, respectively. In the case of
χ > 0 one obtains by an analogous derivation

∂nνµ

∂t
= αE∗

m
3/2
d√

2h̄2π2

{∫
Iν

1

2γ 1/2

[−(
1 − χ2

µ−1

)
ψ

(
ε, χ+

µ−1

)
+

(
1 − χ2

µ

)
ψ

(
ε, χ+

µ

)]
dε

+
∫

Iµ

χ

[
− γ (εν−1)

1/2

1 + 2αεν−1
ψ

(
ε+
ν−1, χ

)
+

γ (εν)
1/2

1 + 2αεν

ψ
(
ε+
ν

)]
dχ

}
. (42)

Now, equation (34) can be easily evaluated by comparing it to the heuristically gained
equations (41) and (42), which results in∫

Bνµ

(
∂ψ

∂t

)
E

P l
νP

l′
µ dε dχ = αE∗

{
2

�ε

∑
λλ′

(−1)λC1
µλ′l′

[
ψ

ν+1µ

λλ′ β(εν) − ψ
νµ

λλ′(−1)lβ(εν−1)
]

+
2

�χ

∑
λλ′

(−1)λ
′
C3

νλl

[
ψ

νµ+1
λλ′

(
1 − χ2

µ

) − ψ
νµ

λλ′(−1)l
′(

1 − χ2
µ−1

)]

−
∑
λλ′

ψ
νµ

λλ′
(
C1

µλ′l′C
4
νλl + C2

µλ′l′C
3
νλl

)}
for χ > 0 (43)

and∫
Bνµ

(
∂ψ

∂t

)
E

P l
νP

l′
µ dε dχ = αE∗

{
2

�ε

∑
λλ′

C1
µλ′l′

[
ψ

νµ

λλ′β(εν) − ψ
ν−1µ

λλ′ (−1)lβ(εν−1)
]

+
2

�χ

∑
λλ′

(−1)λ
′
C3

νλl

[
ψ

νµ+1
λλ′

(
1 − χ2

µ

) − ψ
νµ

λλ′(−1)l
′(

1 − χ2
µ−1

)]

−
∑
λλ′

ψ
νµ

λλ′
(
C1

µλ′l′C
4
νλl + C2

µλ′l′C
3
νλl

)}
for χ < 0. (44)
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Figure 2. Numbering of the energy valleys.

Here, we have introduced the abbreviations

β(ε) = γ 1/2

1 + 2αε
(45a)

C1
µλ′l′ =

∫ 1

−1
χP λ′

(xµ)P l′(xµ) dxµ (45b)

C2
µλ′l′ = 2

�χ

∫ 1

−1
(1 − χ2)

dP l′(xµ)

dxµ

P λ′
(xµ) dxµ (45c)

C3
νλl =

∫ 1

−1
P λ(xν)

1

2γ 1/2
P l(xν) dxν (45d )

C4
νλl = 2

�ε

∫ 1

−1
β(ε)

dP l(xν)

dxν

P λ(xν) dxν. (45e)

Since all moment equations are linear, it is convenient to rewrite them in matrix form.
Therefore, we number the valleys as shown in figure 2 and collect the unknowns ψ(i)λλ′

νµ in a

vector representation ψ̂ = {ψ̂1, . . . , ψ̂6} with ψ̂ i = {
ψ

(i)00
11 , . . . , ψ(i)λλ′

νµ , . . . , ψ
(i)�ε�χ

NεNχ

}
. The

system of moment equations now reads

d

dt
ψ̂ =




s1 f f g f f

f s2 f f g f

f f s3 f f g
g f f s4 f f

f g f f s5 f

f f g f f s6




ψ̂ = Mψ̂ (46)

with f and g being matrices describing gain processes due to f- and g-type intervalley scattering,
whereas the matrices si describe the corresponding loss processes, acoustic intravalley
scattering and the impact of the electric field on the valley i. Because the magnitude of
the transformed electric field vector E∗(i) is equal for opposite valleys, the effect of the
electric field is the same for both valleys. Hence, one finds the symmetry s4 = s1, s5 = s2 and
s6 = s3.
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The steady-state solution to the BTE can now be determined by solving

Mψ̂ = 0. (47)

To find a nontrivial as well as unique solution to equation (47), one must ensure that det M = 0
and dim(Ker M) = 1. The electron density n is a conserved quantity in our physical system.
This fact causes a linear dependence of rows in the matrix M, which can be realized in the
following way. As already mentioned above, moment equations with the weight P 0

ν P 0
µ can be

interpreted as continuity equations for a certain cell Bνµ. Summation over all cells leads to∑
νµ

∂nνµ

∂t
= ∂n

∂t

!= 0 (48)

and since a certain row of M corresponds to ∂nνµ/∂t equation (48) states nothing else as a
linear dependence of rows with all scalar multipliers set equal to 1.

The steady-state solution to the homogeneous system (47) is determined except for a
normalization factor, which is found by the condition

n =
6∑

i=1

ni = 1

V

∑
i

∑
k,↑+↓

f i(k) = m
3/2
d

√
2

h̄3π2

√
�ε�χ

∑
i

∑
νµ

ψ(i)00
νµ (49)

where ni denotes the particle density of the ith valley. The relevant macroscopic quantities,
namely the drift velocity vd and the mean energy 〈ε〉, can now be easily obtained from the
distribution function. By using the definition of the group velocity vk of an electron with
wavevector k,

vk = 1

h̄

∂ε

∂k
(50)

the drift velocity in real axis system results in

vd = 1

nV

∑
i

∑
k,↑+↓

f i(k)vk = 1

nV

∑
i

D−1
i T {êE∗(i)}p j ∗(i)

z (51)

with

j ∗(i)
z = V m0

π2h̄3

(
md

m0

)3/2 √
�ε�χ

2

∑
νµ

∑
λλ′

ψ(i)λλ′
νµ

∫ 1

−1
χP λ′

dxµ

∫ 1

−1
P λβ dxν. (52)

Here, D−1
i denotes the inverse transformation matrix between the real axis system and the

principal axis system of the ith valley, T is the Herring–Vogt matrix (3) and {êE∗(i)}p is a
unit vector in field direction expressed in the corresponding principal axis system. The mean
energy is obtained by

〈ε〉 = 1

nV

∑
i

∑
k,↑+↓

f i(k)ε = m
3/2
d

n
√

2π2h̄3

√
�χ�ε

∑
i

∑
νµλ

ψ(i)λ0
νµ

∫ 1

−1
P λε dxν. (53)

4. Numerical results

The physical parameters of silicon used in our numerical simulations are listed in
table 1. We were advised to use some different deformation potential constants, in particular
for acoustic intravalley scattering, as used in the MC calculations of Canali et al [22] to find
best agreement with experimental data. To keep the numerical calculations both accurate
and as fast as possible, we were limited to quadratic matrices up to a dimension of about
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Table 1. Physical parameters of silicon used in the numerical simulations.

Quantity Value Units Quantity Value Units

mt/m0 0.19 – h̄ω2,f 47 meV
ml/m0 0.916 – (DtK)2

2,f 2 × 108 eV cm−1

ρ 2.329 g cm−3 h̄ω3,f 59 meV
α 0.5 1/eV (DtK)2

3,f 2 × 108 eV cm−1

ul 9.04 ×105 cm s−1 h̄ω1,g 12 meV
ut 5.34 ×105 cm s−1 (DtK)2

1,g 0.9 × 108 eV cm−1

n 1013 1 cm−3 h̄ω2,g 19 meV

1 5.8 × 108 eV (DtK)2

2,g 1.5 × 108 eV cm−1

h̄ω1,f 19 meV h̄ω3,g 62 meV
(DtK)2

1,f 0.15 × 108 eV cm−1 (DtK)2
3,g 11 × 108 eV cm−1

10 000 due to our computer resources. For the case of a fixed number of unknowns, the
numerical results proved to be better if one uses as many cells as possible and to approximate
the distribution function only by a constant interpolation within each cell than to perform the
simulations with a smaller number of cells and to approximate the distribution function by
Legendre polynomials of higher order. Hence, considering the six energy valleys, the χ -space
was split into 12 groups, whereas in the energy space a maximum resolution of 150 intervals
was used. Since the maximum energy εNε

(from which onwards the distribution function can
be assumed to vanish) increases with the applied field, the energy discretization length �ε was
varied from 2 meV for low electric fields (up to 1 kV cm−1) to 20 meV for high electric fields
(≈100 kV cm−1). All numerical results obtained for fields higher than 100 kV cm−1 must be
taken cautiously, because upper energy valleys and the second conduction band, respectively,
are not included in our model. For extremely high fields of about 500 kV cm−1 the distribution
function starts to spread over the whole first Brillouin zone [9] and the concept of separated
energy valleys becomes untenable. Moreover, when there is a sufficient amount of electrons
with energies higher than the energy gap of silicon (≈1.1 eV), impact ionization becomes an
important scattering mechanism.

Figure 3 shows the calculated drift velocity as a function of the electric field applied
parallel to 〈111〉 and 〈100〉 directions at liquid nitrogen and room temperature compared to
measurements [22] and MC data [21]. Since optical intervalley scattering becomes dominant
for high fields, the drift velocity nearly saturates for high enough electric fields. The observed
anisotropy of the drift velocity can be explained by the fact that if the electric field is parallel
to the 〈111〉 direction, its effect is the same on all six energy valleys, whereas applying it along
a 〈100〉 direction, it ‘heats’ the valleys in a different way. In the latter case, the two valleys
with their long principal axes parallel to the electric field become colder than the other four.
Intervalley scattering tries to compensate for the ‘temperature’ differences, which leads to a
repopulation between cold and hot valleys. Figure 4 illustrates the dependence of the ratio of
the particle densities according to hot and cold valleys on the electric field at T = 77 K. For
comparison, MC data from Canali et al [22], scaling technique results from Holm–Kennedy
and Champlin [24] and refractive-index anisotropy measurements of Vorobyov et al [25] are
also indicated.

The mean electron energy as a function of the electric field applied along 〈111〉 direction
at T = 300 K and T = 77 K compared to MC calculations [21, 22] is shown in figure 5. The
MC data obtained from Fischetti and Laux, indicated as circles, are based on an empirical-
pseudopotential band structure calculation, whereas Canali et al used a simple parabolic six
energy valley model in their MC simulations. As expected, we find better agreement with
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Figure 3. Electron drift velocity as a function of the electric field at a temperature of 77 and
300 K. Open and closed circles refer to experimental data [22] obtained with the field parallel
to 〈111〉 and 〈100〉 directions. A high field extension is given by MC results from Fischetti and
Laux [21] indicated by open and closed diamonds again for 〈111〉 and 〈100〉 directions. Solid and
dashed lines show the results obtained by our multicell matrix method.
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Figure 4. Repopulation ratio of cold-to-hot valley as function of the electric field applied along
the 〈100〉 direction at T = 77 K. Closed and open circles indicate the results in [24] and [25],
respectively, whereas triangles indicate MC results from Canali et al [22]. The solid line refers to
the multicell matrix results (MCM).

data obtained by Canali et al, although the mean energy obtained by our multicell method is
somewhat lower for high fields.

Applying the electric field along nonsymmetry directions leads to the so-called transversal
anisotropy effect, first found by Sasaki and Shibuya in germanium. Here, the resulting
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Figure 5. Mean electron energy as function of electric field applied along 〈111〉 direction at
T = 77 K and T = 300 K. Triangles and circles indicate MC results obtained from Canali et al
[22] and Fischetti and Laux [21], respectively. Multicell matrix results refer to solid and dashed
lines.
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Figure 6. Calculated modulus of the angle ψs between field vector and current density at T =
77 K when changing the field vector with constant modulus E = 1 kV cm−1 from 〈001〉 over
〈111〉 to 〈110〉 direction, which is indicated by the polar angle θ .

drift velocity vector is no longer parallel to the electric field vector. Figure 6 shows the
calculated angle ψs between both vectors at T = 77 K when changing continuously the
electric field vector from 〈001〉 over 〈111〉 to 〈110〉 direction, which is indicated by a polar
angle θ . For the symmetry directions, the angle ψs vanishes as expected. Since the number of
intervalley phonons increases with temperature, all anisotropy effects decrease with increasing
temperatures.
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Figure 7. Distribution function ψ versus energy and χ at T = 77 K for E = 60 kV cm−1 (a) and
E = 1 kV cm−1 (b), respectively. The field was applied along 〈111〉 direction.

Finally, the distribution function according to a certain energy valley is shown in
figure 7 for different indicated electric fields at T = 77 K. As also known from MC simulations
one notices that simple analytical approximations of the distribution function, e.g., a ‘drifted’
Maxwellian with a free temperature parameter, will be insufficient for high electric fields.

5. Conclusion

In this paper a new multicell matrix method for solving the BTE for the steady-state regime in
semiconductors is presented. Its main advantage compared to MC simulations is the low cost
of CPU time. The method is tested for a simplified model including only the lowest energy
valleys of n-type silicon. The comparison of numerical results to experimental and MC data
shows that the model is applicable up to fields of about 60 kV cm−1. For higher fields it will
be necessary to consider a more detailed band structure and the impact ionization of electrons.
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